lunes, 10 de noviembre de 2014

FISICA II

Cinemática

La Cinemática es la rama de la mecánica clásica que estudia las leyes del movimiento de los cuerpos sin tener en cuenta las causas que lo producen, limitándose, esencialmente, al estudio de la trayectoria en función del tiempo.
En la Cinemática se utiliza un sistema de coordenadas para describir las trayectorias, denominado sistema de referencia. La velocidad es el ritmo con que cambia la posición un cuerpo. La aceleración es el ritmo con que cambia su velocidad. La velocidad y la aceleración son las dos principales cantidades que describen cómo cambia su posición en función del tiempo.
El estudio de la cinemática usualmente empieza con la consideración de casos particulares de movimiento con características particulares. Usualmente se empieza el estudio cinemático considerando el movimiento de una partícula o cuerpo cuya estructura y propiedades internas pueden ignorarse para explicar su movimiento global. Entre los movimientos que puede ejecutar una partícula material libre son particularmente interesantes los siguientes:
  • Movimiento rectilíneo uniforme. Un movimiento es rectilíneo cuando describe una trayectoria recta.
  • Movimiento circular. El movimiento circular es el que se basa en un eje de giro y radio constante: la trayectoria será una circunferencia. Si, además, la velocidad de giro es constante, se produce el movimiento circular uniforme, que es un caso particular de movimiento circular, con radio fijo y velocidad angular referente. En este caso la velocidad vectorial no es constante, aunque sí puede ser constante la celeridad (o módulo de la velocidad).
  • Movimiento parabólico. Se denomina movimiento parabólico al realizado por un objeto cuya trayectoria describe una parábola. En mecánica clásica se corresponde con la trayectoria ideal de un proyectil que se mueve en un medio que no ofrece resistencia al avance y que está sujeto a un campo gravitatorio uniforme. También es posible demostrar que puede ser analizado como la composición de dos movimientos rectilíneos, un movimiento rectilíneo uniforme horizontal y movimiento rectilíneo uniformemente acelerado vertical.

Movimiento rectilíneo

Un movimiento es rectilíneo cuando describe una trayectoria recta. En ese tipo de movimiento la aceleración y la velocidad son siempre paralelas. Usualmente se estudian dos casos particulares de movimiento rectilíneo:
  • El movimiento rectilíneo uniforme cuya trayectoria además de ser una línea recta se recorre a velocidad constante, es decir, con una aceleración nula. Esto implica que la velocidad media entre dos instantes cualesquiera siempre tendrá el mismo valor. Además la velocidad instantánea y media de este movimiento coincidirán.
  • El Movimiento rectilíneo uniformemente acelerado es aquél en el que un cuerpo se desplaza sobre una recta con aceleración constante. Esto implica que en cualquier intervalo de tiempo, la aceleración del cuerpo tendrá siempre el mismo valor. Por ejemplo la caída libre de un cuerpo, con aceleración de la gravedad constante.

Movimiento circular

El movimiento circular es el que se basa en un eje de giro y radio constante: la trayectoria será una circunferencia. Si, además, la velocidad de giro es constante, se produce el movimiento circular uniforme, que es un caso particular de movimiento circular, con radio fijo y velocidad angular constante.
No se puede decir que la velocidad es constante ya que, al ser una magnitud vectorial esta tiene módulo y dirección. El módulo de la velocidad permanece constante durante todo el movimiento pero la dirección está constantemente cambiando, siendo en todo momento tangente a la trayectoria circular. Esto implica la presencia de una aceleración que, si bien en este caso no varía al módulo de la velocidad, si varía su dirección.

Onda estacionaria formada por la interferencia entre una onda (azul) que avanza hacia la derecha y una onda (roja) que avanza hacia la izquierda.
Péndulo simple en movimiento armónico con oscilaciones pequeñas.
Se denomina movimiento parabólico al realizado por un objeto cuya trayectoria describe una parábola. Se corresponde con la trayectoria ideal de un cuerpo que se mueve en un medio, que no ofrece resistencia al avance y que está sujeto a un campo gravitatorio uniforme. También es posible demostrar que puede ser analizado como la composición de dos movimientos rectilíneos, un movimiento rectilíneo uniforme horizontal y movimiento rectilíneo uniformemente acelerado vertical.

Características del movimiento

La descripción del movimiento de partículas puntuales o corpúsculos (cuya estructura interna no se requiere para describir la posición general de la partícula) es similar en mecánica clásica y mecánica relativista. En ambas el movimiento es una curva parametrizada por un parámetro escalar. En la descripción de la mecánica clásica el parámetro es el tiempo universal, mientras que en relatividad se usa el intervalo relativista ya que el tiempo propio percibido por la partícula y el tiempo medido por diferentes observadores no coincide.
La descripción cuántica del movimiento es más compleja ya que realmente la descripción cuántica del movimiento no asume necesariamente que las partículas sigan una trayectoria de tipo clásico (algunas interpretaciones de la mecánica cuántica sí asumen que exista una trayectoria única, pero otras formulaciones prescinden por completo del concepto de trayectoria), por lo que en esas formulaciones no tiene sentido hablar ni de posición, ni de velocidad.
Sin embargo, todas las teorías físicas del movimiento atribuyen al movimiento una serie de características o atributos físicos como:
  • Posición (general en mecánica clásica y relativista, con restricciones en mecánica cuántica).
  • La cantidad de movimiento lineal
  • La cantidad de movimiento angular
  • La fuerza existente sobre la partícula
En mecánica clásica y mecánica relativista todos ellos son valores numéricos medibles, mientras que en mecánica cuántica esas magnitudes son en general variables aleatorias para las que es posible predecir sus valores medios, pero no el valor exacto en todo momento.

Posición y desplazamiento

En mecánica clásica es perfectamente posible definir unívocamente la longitud Lc de la trayectoria o camino recorrido por un cuerpo humano. También puede definirse sin ambigüedad la distancia d que hay entre un punto inicial y el final de su trayectoria; está representado por la longitud de la línea recta que une el punto inicial con el punto final. Ambas magnitudes están relacionadas por la desigualdad siguiente:
d= \left\| \int_0^t \mathbf{v}dt \right\|
\le \int_0^t \|\mathbf{v}\| dt = L_c
En relatividad especial sin embargo el concepto de desplazamiento de un móvil o longitud recorrida depende del observador y aunque para cada observador la longitud recorrida es mayor o igual que el desplazamiento alcanzado no puede definirse de manera objetiva una "longitud recorrida" por el móvil en la que puedan coincidir todos los observadores.

Velocidad y rapidez

La velocidad es una magnitud física de carácter vectorial que expresa el desplazamiento de un objeto por unidad de tiempo. En el lenguaje cotidiano se emplea las palabras rapidez y velocidad de manera indistinta. En física se hace una distinción entre ellas. De manera muy sencilla, la diferencia es que la velocidad es la rapidez en una dirección determinada. Cuando se dice que un auto viaja a 60 km/hora se está indicando su rapidez. Pero al decir que un auto se desplaza a 60 km/h hacia el norte se está especificando su velocidad. La rapidez describe qué tan aprisa se desplaza un objeto; la velocidad describe que tan aprisa lo hace y en que dirección.
La velocidad de movimiento en un instante dado depende del observador tanto en mecánica clásica como en teoría de la relatividad. En mecánica cuántica la velocidad de un móvil al igual que su trayectoria no tiene porqué estar definida en un instante dado, de acuerdo con algunas interpretaciones de la teoría. El fenómenos del Zitterbewegung sugiere que un electrón podría tener un movimiento oscilatorio transversal alrededor de lo que su "trayectoria" clásica (es decir, el camino que debería seguir si la descripción clásica fuera correcta).
La rapidez o también llamada celeridad es la relación entre la distancia recorrida y el tiempo empleado en recorrerla. Un auto, por ejemplo, recorre un cierto número de kilómetros en una hora que puede ser de 110km/h. La rapidez es una medida de que tan veloz se mueve un objeto. Es la razón de cambio a la que se recorre la distancia, ya que la expresión razón de cambio indica que estamos dividiendo alguna cantidad entre el tiempo, por lo tanto, la rapidez se mide siempre en términos de una unidad de distancia dividida entre una unidad de tiempo.

Aceleración

En física el término aceleración es una magnitud vectorial que se aplica tanto a los aumentos como a las disminuciones de rapidez en una unidad de tiempo, por ejemplo, los frenos de un auto pueden producir grandes aceleraciones retardantes, es decir, pueden producir un gran decremento por segundo de su rapidez. A esto se le suele llamar desaceleración o aceleración negativa. El término aceleración se aplica tanto a cambios de rapidez como a cambios de dirección. Si recorres una curva con una rapidez constante de 50 km/h, sientes los efectos de la aceleración como una tendencia a inclinarte hacia el exterior de la curva (inercia). Se puede recorrer la curva con rapidez constante, pero la velocidad no es constante ya que la dirección cambia a cada instante, por lo tanto, el estado de movimiento cambia, es decir, se está acelerando.
La aceleración normal es una medida de la curvatura de la trayectoria, diferentes observadores en movimiento no uniforme respecto a ellos observarán fuerzas y aceleraciones diferentes y por tanto trayectorias diferentes. Si un observador inercial examina la trayectoria de una partícula que se mueve en línea recta y con velocidad uniforme (trayectoria de curvatura cero), cualquier otro observador inercial verá la partícula moverse en línea recta y con velocidad uniforme (aunque no la misma recta), en el caso de observadores arbitrarios en movimiento acelerado entre ellos las formas de las trayectorias pueden diferir notablemente, ya que al medir los dos observadores aceleraciones completamente diferentes, la trayectoria de la partícula se curvará de maneras muy diferentes para uno y otro observador.

No hay comentarios:

Publicar un comentario